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Kernel trick 

Ridge regression
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Recap: Linear regression
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Recap: Linear regression
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Loss function in linear regression
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Closed-form solution in linear regression
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Singularity

It has an exact solution if:

a)  is not singular (it is singular with not enough datapoints)

b) Data is not noisy (otherwise no single match to , )
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Singularity

It has an exact solution if:

a)  is not singular (it is singular with not enough datapoints)

b) Data is not noisy (otherwise no single match to , )
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Regularizing
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Closed-form solution
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The kernel trick to enable nonlinear regression

 Problem: Estimate a non-linear funct ;ion y f x w
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The exists a non-linear transformation , such that the problem becomes linear.
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The kernel trick to enable nonlinear regression

     

Replace all  between training points

by kernel function :       , , . 

The kernel function is easier to compute and does not require to know

inner pro u

 .

d cts

i j i jk X X k x x x x 



  

     

 

 
Gram Matrix 

T

in
feature sp

 
1

1

ace

Predicted output for a query point  becomes:
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